You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
31 lines
902 B
31 lines
902 B
# Logistic Regression
|
|
|
|
自己编程实现Logistic Regression的多分类问题。使用的数据可以是sklearn的digital数据。
|
|
|
|

|
|
|
|
加载数据的方式是:
|
|
```
|
|
import matplotlib.pyplot as plt
|
|
from sklearn.datasets import load_digits
|
|
|
|
# load data
|
|
digits = load_digits()
|
|
|
|
# plot the digits
|
|
fig = plt.figure(figsize=(6, 6)) # figure size in inches
|
|
fig.subplots_adjust(left=0, right=1, bottom=0, top=1, hspace=0.05, wspace=0.05)
|
|
|
|
# plot the digits: each image is 8x8 pixels
|
|
for i in range(64):
|
|
ax = fig.add_subplot(8, 8, i + 1, xticks=[], yticks=[])
|
|
ax.imshow(digits.images[i], cmap=plt.cm.binary)
|
|
|
|
# label the image with the target value
|
|
ax.text(0, 7, str(digits.target[i]))
|
|
```
|
|
|
|
要求:
|
|
1. 自己编程实现Logistic Regression的多分了。
|
|
2. 对比自己实现与sklearn的方法的精度。
|
|
3. 如何将分类错误的样本可视化出来? |