You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

31 lines
902 B

# Logistic Regression
自己编程实现Logistic Regression的多分类问题。使用的数据可以是sklearn的digital数据。
![digit](images/digit.png)
加载数据的方式是:
```
import matplotlib.pyplot as plt
from sklearn.datasets import load_digits
# load data
digits = load_digits()
# plot the digits
fig = plt.figure(figsize=(6, 6)) # figure size in inches
fig.subplots_adjust(left=0, right=1, bottom=0, top=1, hspace=0.05, wspace=0.05)
# plot the digits: each image is 8x8 pixels
for i in range(64):
ax = fig.add_subplot(8, 8, i + 1, xticks=[], yticks=[])
ax.imshow(digits.images[i], cmap=plt.cm.binary)
# label the image with the target value
ax.text(0, 7, str(digits.target[i]))
```
要求:
1. 自己编程实现Logistic Regression的多分类。
2. 对比自己实现与sklearn的方法的精度。
3. 如何将分类错误的样本可视化出来?