Finished the homework04.

dev
SJ2050cn 4 years ago
parent 16de235b4c
commit 44f6362737

@ -16,36 +16,40 @@ g(z_i)=\frac{e^{z_{i}}}{\sum\limits_{j=1}^{n} e^{z_{j}}}
$$
其中n表示多个输出或类别数$z_j$为第$j$个输出或类别的值,$i$表示当前需要计算的类别。从上述公式中可以看出Softmax函数的计算结果落在$[0,\ 1]$中且所有类别的Softmax函数值之和等于1。
在输入到输出之间引入一层函数映射,取$\mathbf{\Theta}^T\cdot\mathbf{x}=\mathbf{z}$,其中$\mathbf{\Theta}=[\theta_1,\ \theta_2,\ ,...,\ \theta_n]$为权重系数,$\theta$为权重向量,$\mathbf{x}$为输入向量,$\mathbf{z}$为输出向量则Softmax函数可以写成
在输入到输出之间引入一层函数映射,取$\mathbf{\Theta}^T\cdot\mathbf{x}+\mathbf{b}=\mathbf{z}$,其中$\mathbf{\Theta}=[\theta_1,\ \theta_2,\ ,...,\ \theta_n]$为权重系数,$\theta$为权重向量,$\mathbf{x}$为输入向量,$\mathbf{z}$为输出向量则Softmax函数可以写成
$$
g(z_i)=g(\theta_i^T \mathbf{x})=\frac{e^{\theta_i^T\mathbf{x}}}{\sum\limits_{j=1}^{n} e^{\theta_j^T \mathbf{x}}}=h_{\theta_i}(\mathbf{x})
g(z_i)=g(\theta_i^T \mathbf{x}+b_i)=\frac{e^{\theta_i^T\mathbf{x}+b_i}}{\sum\limits_{j=1}^{n} e^{\theta_j^T \mathbf{x}+b_j}}=h_{\theta_i, b_i}(\mathbf{x})
$$
构造似然函数,若有$m$个训练样本:
$$
\begin{aligned}
L(\Theta)&=p(\mathbf{y}|\mathbf{X};\Theta) \\\\
& = \prod\limits_{i=1}^{m} p(y^{i}|\mathbf{x}^{i};\Theta) \\\\
& = \prod_{i=1}^m h_{\theta_i}(\mathbf{x})
L(\Theta;\mathbf{b})&=p(\mathbf{y}|\mathbf{X};\Theta,\mathbf{b}) \\\\
& = \prod\limits_{i=1}^{m} p(y^{i}|\mathbf{x}^{i};\Theta,\mathbf{b}) \\\\
& = \prod_{i=1}^m h_{\theta_i,b_i}(\mathbf{x})
\end{aligned}
$$
对似然函数取对数,转换为:
$$
l(\Theta)=log(L(\Theta))=\sum\limits_{i=1}^m log(h_{\theta_i}(\mathbf{x}))
l(\Theta,\mathbf{b})=log(L(\Theta),\mathbf{b})=\sum\limits_{i=1}^m log(h_{\theta_i,b_i}(\mathbf{x}))
$$
对$log(h_{\theta_i}(\mathbf{x}))$求导得到:
对$log(h_{\theta_i,b_i}(\mathbf{x}))$对$z_k$求导得到:
$$
\frac{\partial{log(h_{\theta_i}(\mathbf{x}))}}{\partial{z_k}}=\begin{cases}
1-h_{\theta_k}(\mathbf{x}) & \text{ if } k=i \\\\
-h_{\theta_k}(\mathbf{x}) & else
\frac{\partial{log(h_{\theta_i,b_i}(\mathbf{x}))}}{\partial{z_k}}=\begin{cases}
1-h_{\theta_k,b_k}(\mathbf{x}) & \text{ if } k=i \\\\
-h_{\theta_k,b_k}(\mathbf{x}) & else
\end{cases}
$$
转换后的似然函数对$\theta$求偏导,在这里我们以只有一个训练样本的情况为例:
$$
\begin{aligned}
\frac{\partial}{\partial\theta_k}l(\Theta)&=\frac{\partial l(\Theta)}{\partial{z_k}}\cdot \frac{\partial z_k}{\partial \theta_k} \\\\
&=(y_k-h_{\theta_k}(\mathbf{x}))\mathbf{x}
\frac{\partial}{\partial\theta_k}l(\Theta,\mathbf{b})&=\frac{\partial l(\Theta,\mathbf{b})}{\partial{z_k}}\cdot \frac{\partial z_k}{\partial \theta_k} \\\\
&=(y_k-h_{\theta_k,b_k}(\mathbf{x}))\mathbf{x}
\end{aligned}
$$
对偏置项$b$求偏导与上述类似:
$$
\frac{\partial}{\partial b_k}l(\Theta,\mathbf{b})=y_k-h_{\theta_k,b_k}(\mathbf{x})
$$
上式中$y_k$的表达式如下:
$$
y_k=\begin{cases}
@ -53,8 +57,40 @@ y_k=\begin{cases}
0 & else
\end{cases}
$$
此时,我们就可以写出最大化似然函数的更新方向,$\theta_k$的迭代表示为:
此时,我们就可以写出最大化似然函数的更新方向,$\theta_k$与$b_k$的迭代表示为:
$$
\theta_k=\theta_k+\eta(\sum\limits_{i=1}^{m}(y_k-h_{\theta_k,b_k}(\mathbf{x}^i))\cdot \mathbf{x}^i)
$$
\theta_k=\theta_k+\eta(\sum\limits_{i=1}^{m}(y_k-h_{\theta_k}(\mathbf{x}^i))\cdot \mathbf{x}^i)
$$
b_k = b_k+\eta (\sum\limits_{i=1}^{m}(y_k-h_{\theta_k,b_k}))
$$
其中$\eta$为学习率可以看到当输出向量的维度等于2时即二分类时上式与二分类中权重向量的迭代公式相等。
## 三、运行结果
使用的数据是sklearn中的digital数据其每一个样本由64个像素组成输出结果是0-9中的一个数。由于输入和输出都是一个高维向量最后结果采用confusion matrix可视化出来其主对角线上的个数为预测正确的数目其余位置上的元素为预测失败的样本个数。
由于sklearn中的digital数据有1700多个样本数据我们将前1200多个样本作为训练数据最后500个作为测试数据分别采用自己实现的softmax回归方法以及sklearn内置的OVR多分类方法进行训练并预测。
softmax回归的confusion matrix
![](images/predict_result_softmax.png)
softmax回归在训练数据上的预测精度以及在测试数据上的预测精度为
![](images/accuracy_softmax.png)
使用sklearn内置的多分类方法运行结果的confusion matrix
![](images/predict_result_sklearn.png)
sklearn内置的多分类方法在训练数据上的预测精度以及在测试数据上的预测精度为
![](images/accuracy_sklearn.png)
从上面的运行结果中来看自己实现的softmax方法以及sklearn内置的多分类方法最后在测试数据上的预测精度都达到了0.9以上,二者的差距非常的小。

@ -0,0 +1,39 @@
'''
Author: SJ2050
Date: 2021-11-21 17:22:02
LastEditTime: 2021-11-21 22:05:09
Version: v0.0.1
Description: Use softmax regression method to solve multiclass classification problems.
Copyright © 2021 SJ2050
'''
import matplotlib.pyplot as plt
from sklearn.datasets import load_digits
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from softmax_regression import SoftmaxRegression
# load data
digits = load_digits()
x_train = digits.data[:-500]
y_train = digits.target[:-500]
softmax_reg = SoftmaxRegression()
softmax_reg.train(x_train, y_train)
# plot confusion matrix
x_test = digits.data[-500:]
y_test = digits.target[-500:]
pred_train = softmax_reg.predict(x_train)
pred_test = softmax_reg.predict(x_test)
print(f'accuracy train = {accuracy_score(y_train, pred_train)}')
print(f'accuracy test = {accuracy_score(y_test, pred_test)}')
cm = confusion_matrix(y_test, pred_test)
plt.matshow(cm)
plt.title(u'Confusion Matrix')
plt.colorbar()
plt.ylabel(u'Groundtruth')
plt.xlabel(u'Predict')
plt.show()

@ -0,0 +1,38 @@
'''
Author: SJ2050
Date: 2021-11-21 18:24:41
LastEditTime: 2021-11-21 18:50:47
Version: v0.0.1
Description: Use sklearn to solve logistic regression problems.
Copyright © 2021 SJ2050
'''
import matplotlib.pyplot as plt
from sklearn.datasets import load_digits
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
# load data
digits = load_digits()
x_train = digits.data[:-500]
y_train = digits.target[:-500]
log_reg=LogisticRegression()
log_reg.fit(x_train, y_train)
# plot confusion matrix
x_test = digits.data[-500:]
y_test = digits.target[-500:]
pred_train = log_reg.predict(x_train)
pred_test = log_reg.predict(x_test)
print(f'accuracy train = {accuracy_score(y_train, pred_train)}')
print(f'accuracy test = {accuracy_score(y_test, pred_test)}')
cm = confusion_matrix(y_test, pred_test)
plt.matshow(cm)
plt.title(u'Confusion Matrix')
plt.colorbar()
plt.ylabel(u'Groundtruth')
plt.xlabel(u'Predict')
plt.show()

@ -0,0 +1,106 @@
'''
Author: SJ2050
Date: 2021-11-21 17:06:31
LastEditTime: 2021-11-21 22:29:52
Version: v0.0.1
Description: Softmax regerssion.
Copyright © 2021 SJ2050
'''
import numpy as np
def softmax(Z):
assert(len(Z.shape) == 2 and Z.shape[1] == 1, 'Z should be a column vector!')
Z_exp = np.exp(Z)
return Z_exp/Z_exp.sum(0, keepdims=True)
class SoftmaxRegression():
def __init__(self):
self.is_trained = False
pass
def train(self, train_data, train_label, num_iterations=150, alpha=0.01):
self.train_data = train_data
self.train_label = train_label
self.classes = np.unique(self.train_label)
self.out_dim = len(self.classes)
train_data_num, self.inp_dim = np.shape(self.train_data)
self.weights = np.random.random((self.inp_dim, self.out_dim))
self.b = np.random.random((self.out_dim, 1))
y = lambda k, cls: 1 if k == cls else 0
weights_grad = [[] for i in range(self.out_dim)]
for j in range(num_iterations):
# print(f'iteration: {j}')
data_index = list(range(train_data_num))
for i in range(train_data_num):
rand_index = int(np.random.uniform(0, len(data_index)))
# x_vec = np.vstack(self.train_data[rand_index])
x_vec = self.train_data[rand_index].reshape(-1, 1)
softmax_values = softmax(np.dot(self.weights.T, x_vec)+self.b)[:, 0]
label =self.train_label[rand_index]
cls = np.argwhere(self.classes == label)[0][0]
error = lambda k: y(k, cls)-softmax_values[k]
for k in range(self.out_dim):
err = error(k)
# self.weights += np.pad(alpha*err*x_vec, ((0, 0), (k, self.out_dim-1-k)), \
# 'constant', constant_values=0)
weights_grad[k] = (alpha*err*x_vec)[:, 0]
# print(self.weights)
self.b[k, 0] += alpha*err
self.weights += np.array(weights_grad).T
del(data_index[rand_index])
self.is_trained = True
def predict(self, predict_data):
if self.is_trained:
predict_num = len(predict_data)
result = np.empty(predict_num)
for i in range(predict_num):
# x_vec = np.vstack(predict_data[i])
x_vec = predict_data[i].reshape(-1, 1)
result[i] = self.classes[np.argmax(softmax(np.dot(self.weights.T, x_vec)+self.b))]
return result
else:
print('Need training before predicting!!')
if __name__ == '__main__':
# test binary classsfication
import matplotlib.pyplot as plt
import sklearn.datasets
from sklearn.metrics import accuracy_score
def plot_decision_boundary(predict_func, data, label):
"""画出结果图
Args:
pred_func (callable): 预测函数
data (numpy.ndarray): 训练数据集合
label (numpy.ndarray): 训练数据标签
"""
x_min, x_max = data[:, 0].min() - .5, data[:, 0].max() + .5
y_min, y_max = data[:, 1].min() - .5, data[:, 1].max() + .5
h = 0.01
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
Z = predict_func(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral) #画出登高线并填充
plt.scatter(data[:, 0], data[:, 1], c=label, cmap=plt.cm.Spectral)
plt.show()
data, label = sklearn.datasets.make_moons(200, noise=0.30)
plt.scatter(data[:,0], data[:,1], c=label)
plt.title("Original Data")
softmax_reg = SoftmaxRegression()
softmax_reg.train(data, label, 200)
plot_decision_boundary(lambda x: softmax_reg.predict(x), data, label)
y_train = softmax_reg.predict(data)
print(f'accuracy train = {accuracy_score(label, y_train)}')

Binary file not shown.

After

Width:  |  Height:  |  Size: 21 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 22 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 17 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 17 KiB

Loading…
Cancel
Save