diff --git a/homework_04_logistic_regression/README.md b/homework_04_logistic_regression/README.md new file mode 100644 index 0000000..4af1c6c --- /dev/null +++ b/homework_04_logistic_regression/README.md @@ -0,0 +1,31 @@ +# Logistic Regression + +自己编程实现Logistic Regression的多分类问题。使用的数据可以是sklearn的digital数据。 + +![digit](images/digit.png) + +加载数据的方式是: +``` +import matplotlib.pyplot as plt +from sklearn.datasets import load_digits + +# load data +digits = load_digits() + +# plot the digits +fig = plt.figure(figsize=(6, 6)) # figure size in inches +fig.subplots_adjust(left=0, right=1, bottom=0, top=1, hspace=0.05, wspace=0.05) + +# plot the digits: each image is 8x8 pixels +for i in range(64): + ax = fig.add_subplot(8, 8, i + 1, xticks=[], yticks=[]) + ax.imshow(digits.images[i], cmap=plt.cm.binary) + + # label the image with the target value + ax.text(0, 7, str(digits.target[i])) +``` + +要求: +1. 自己编程实现Logistic Regression的多分了。 +2. 对比自己实现与sklearn的方法的精度。 +3. 如何将分类错误的样本可视化出来? \ No newline at end of file diff --git a/homework_04_logistic_regression/images/digit.png b/homework_04_logistic_regression/images/digit.png new file mode 100644 index 0000000..f04842e Binary files /dev/null and b/homework_04_logistic_regression/images/digit.png differ